
EECE 310 – SAMPLE BJT PROBLEMS

- Unless otherwise specified, assume that:
- $V_{\rm T} = 25 \text{ mV}$
- $|V_{\text{BE(ACTIVE)}}| = 0.7 \text{ V}$
- $|V_{\text{CE(SAT)}}| = 0.2 \text{ V}$
- $\beta = 100$
- Capacitors are very large
- Body effect, Early effect, and channel-length modulation are negligible
- 1. In the circuit shown below, assume V_{E1} = 2.5 V, β_1 = 100 for the NPN BJT, and β_2 = 20 for the PNP BJT. Calculate I_{B1} in μA .
- a) 34
- b) 29
- c) 39
- d) 31.5
- e) 36.5

2.

In problem 1, find V_{C1} in V.

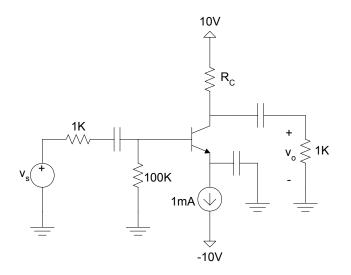
- a) 6.35
- b) 6.1
- c) 6.6
- d) 6.85
- e) 7.1

3.

In problem 1, find I_{E2} in mA.

- a) 7.69
- b) 1.56
- c) 3.61
- d) 5.65
- e) 9.74

4.

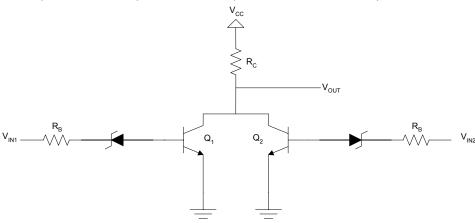

In problem 1, find R_{E2} in $K\Omega$.

- a) 0.819
- b) 5.00
- c) 0.596
- d) 2.02
- e) 1.20

5.

For the BJT amplifier shown below, find V_{CE} in V. Assume $R_C = 2500 \Omega$.

- a) 10.2
- b) 9.71
- c) 8.72
- d) 9.21
- e) 8.22


Find the voltage gain v_o/v_s in problem 5.

- a) -21.1
- b) -21.9
- c) -16.9
- d) -18.8
- e) -20.1

7.

Find the logic function of the RTL gate shown below. Assume V_{CC} = 12 V, R_C = 1 K Ω , R_B = 10 K Ω , and that the Zener diodes drop 4.7 V when conducting.

- a) NAND
- b) NOR
- c) AND
- d) NOT
- e) OR

8

Find the output level (in V) that corresponds to LOW in the gate of problem 7.

- a) 0.5
- b) 0.7
- c) 1.2
- d) 0.2
- e) 1

9

Find the output level (in V) that corresponds to HIGH in the gate of problem 7.

- a) 12
- b) 11.3
- c) 6.6
- d) 4.7
- e) 15

10

Find the power drawn by the gate (in W) from the V_{CC} power supply when only one input is high in the circuit of problem 7.

- a) 0.0118
- b) 0.222
- c) 0.142
- d) 2.05
- e) 0.0148

11

Find the value of $V_{\rm IL}$ (in V) for the gate of problem 7. The value of $V_{\rm IL}$ in this case is approximated by the value of input voltage at which the BJT starts conduction (the BJT is at the edge of the active region.)

- a) 0.7
- b) 5.4
- c) 1.4
- d) 12
- e) 4.7 V

Find the base current of Q_1 (in mA) in the circuit of problem 7, when Q_1 is at the edge of the saturation region. Assume that V_{1N2} is low.

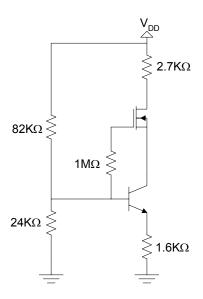
- a) 0.841
- b) 0.075
- c) 0.118
- d) 0.148
- e) 0.536

13.

Find the value of V_{IH} (in V) for the gate of problem 7. The value of V_{IH} in this case is approximated by the value of input voltage at which the BJT is at the edge of saturation.

- a) 6.58
- b) 5.58
- c) 6.88
- d) 5.88
- e) 8.55

14.


Find the base current of Q_1 (in mA) in the gate of problem 7 when the input voltage is $V_{IN1} = 7 \text{ V}$. Assume that V_{IN2} is low.

- a) 0.06
- b) 0.16
- c) 0.26
- d) 0.36
- e) 0.46

15

In the circuit shown below, the MOSFET is N-channel *depletion* with $k'(W/L) = 1 \text{ mA/V}^2$ and $V_t = -6V$. Find the base current of the BJT in μA . Assume $V_{DD} = 16 \text{ V}$.

- a) 14.96
- b) 12.45
- c) 11.19
- d) 13.71
- e) 16.22

16.

In problem 15, find the collector voltage (in V) of the BJT.

- a) 7.13
- b) 7.39
- c) 7.01
- d) 7.26
- e) 7.52

17.

A CMOS inverter powered by a V_{DD} = 2.5 V supply uses an N-channel MOSFET with $k'_N(W/L)_N$ = 2 mA/V², V_{tn} = 0.7 V, and a P-channel MOSFET with $k'_P(W/L)_P$ = 1 mA/V², V_{tp} = -0.8 V. Find the output LOW voltage level (in V)

- a) 0.076
- b) 0.131
- c) 0
- d) 0.101
- e) 0.128

18.

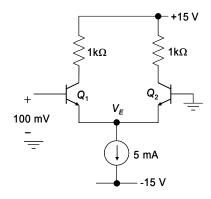
The inverter in problem 17 is loaded by a load that sources 1 mA from V_{DD} into the output. What is the output voltage (in V) in this case? The input is HIGH.

- a) 0.303
- b) 0.185
- c) 0.155
- d) 0.229
- e) 0.134

What is the dynamic power dissipation (in mW) of the CMOS inverter in problem 17 when it is loaded by a 1 pF capacitor and its input is a 16 MHz clock.

- a) 0.324
- b) 0.1
- c) 0.256
- d) 0.144
- e) 0.196

20.

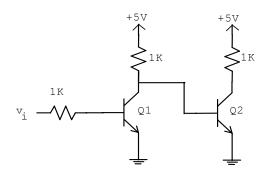

The propagation delay of the CMOS inverter in problem 17 is 1 ns when loaded by a 1 pF capacitor. What happens to the propagation delay when the load capacitance is reduced to 0.5 pF? The delay is a) unchanged b) increased to 2ns c) reduced to 0.5 ns

- d) increased to 4 ns
- e) reduced to 0.25 ns

21.

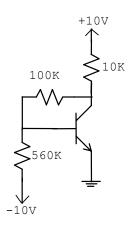
In the circuit shown below, the transistors are identical, have *very large* β , and $V_{BE} = 0.68$ V at $I_E = 1$ mA. Determine the value of V_{BE} when $I_E = 4$ mA.

- a) 0.69 V
- b) 0.71 V
- c) 0.73 V
- d) 0.67 V
- e) 0.75 V


22

Determine V_E with respect to ground in the circuit of problem 21.

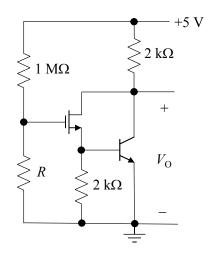
- a) -0.63 V
- b) -0.64 V
- c) -0.66 V
- d) -0.62 V
- e) -0.65 V


23.

For the circuit shown, in what region of operation are the two BJTs operating when v_i = 5 V? Assume β_{min} = 10.

In the circuit shown below, assume $\beta = 99$.

- a) Find the base current of the BJT.
- b) Find the value of V_{CE} .

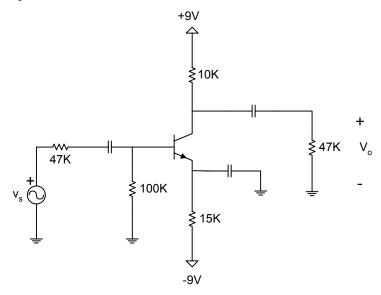

25.

A 10 K Ω resistor is connected between the output of a CMOS inverter and ground. Find the resulting value of V_{OH} (when the input is zero volts.) Assume $V_{DD} = 5 \text{ V}$, $V_{tn} = -V_{tp} = 1 \text{ V}$, and $k'_n(W/L)_n = k'_p$ $(W/L)_p = 0.1 \text{ mA/V}^2.$

26.

Refer to the circuit shown on the right. Determine *R* so that the DC output $V_0 = 2$ V, assuming β to be very large, $V_{BE} = 0.8$ V, $k'_n(W/L) =$ $0.2 \text{ mA} / \text{V}^2$, and $V_t = 1 \text{ V}$.

- a) $4.36 \text{ M}\Omega$
- b) $3.17 \,\mathrm{M}\Omega$
- c) 10.54 MΩ
- d) $6.14 \,\mathrm{M}\Omega$
- e) none of the above

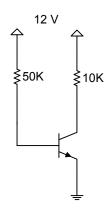


27.

In the previous problem, find the collector current of the BJT.

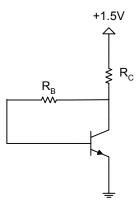
- a) 1.5 mA
- b) 0.5 mA
- c) 1.1 mA
- d) 2.1 mA e) none of the above

Consider the BJT amplifier shown below. The BJT has $V_A = 75 \text{ V}$.


- a) Find the value of α for this BJT.
- b) Perform a DC analysis to determine: I_B , I_C , I_E , V_{BE} , V_{BC} , V_{CE} . Neglect the Early effect in the DC analysis. Verify your assumptions.
- c) Find the small signal quantities $g_{\rm m}$, $r_{\rm \pi}$, $r_{\rm e}$, and $r_{\rm o}$.
- d) Find the voltage gain of this amplifier, v_0/v_s
- e) If v_{be} is limited to 10 mV peak-to-peak, find the maximum peak-to-peak variation in the collector voltage. Would the BJT remain active for such peak-to-peak variation in collector voltage? What is the corresponding peak-to-peak variation in v_s ?
- f) Find the maximum peak-to-peak variation in collector voltage to keep the BJT active. Neglect distortion.

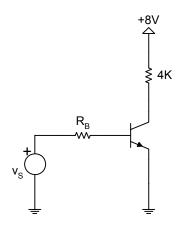
29.

For the BJT shown in the circuit, determine the values of β and I_S .



In what region is the BJT shown in the circuit operating? Assume that β varies between 50 and 200. Justify your answer.

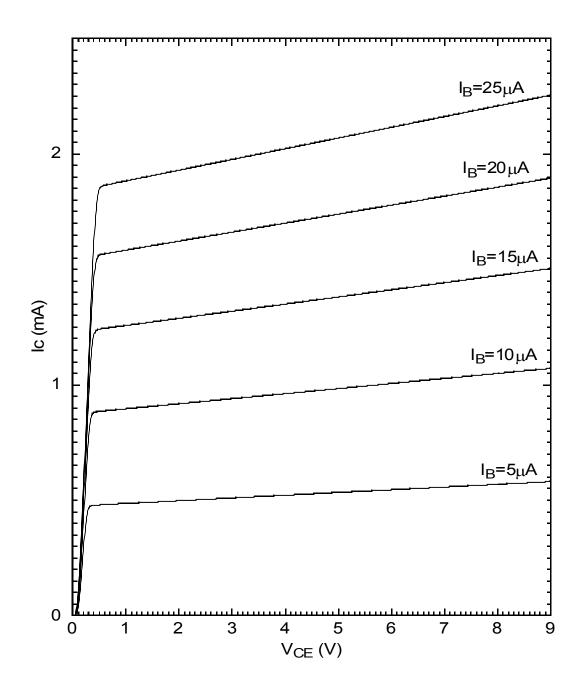
31.


a) Design the bias circuit in the figure below (find the values of R_B and R_C) to get a collector current of 10 μ A and a collector voltage of 0.9 V. Assume that $\beta = 60$.

b) If β of the BJT happens to be 120, find the new Q point (I_C , V_{CE}). Use the values of R_B and R_C that you found in part (a).

32.

For the BJT amplifier shown below, the source $v_{\rm S}$ establishes a DC base current of 10 μ A. In addition, the source causes a sinusoidal signal current component $i_{\rm b}$ of 10 μ A *peak-to-peak* to appear in the base, and a sinusoidal signal voltage component $v_{\rm be}$ of 20 mV *peak-to-peak* to appear between base and emitter.



From the graphical characteristics of the BJT shown below, use the load line to find the Q point (I_C , V_{CE}). What is the value of β for the BJT, at the Q point?

Given the signal component i_b , determine, graphically, the signal components in i_C and v_{CE} . Mark all your points on the graph.

Determine the following quantities: voltage gain v_{ce}/v_{be} , current gain i_c/i_b , and i_c/v_{be} . What does this last quantity (i_c/v_{be}) represent? Give an estimate of the value of the Early voltage V_A for this BJT, around the Q point.

BJT Characteristics

